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ABSTRACT
An implicit approximate factorisation (AF) algorithm is constructed which has the following

characteristics.

" In 2-D: The scheme is unconditionally stable, has a 3 x 3 stencil and at steady state has a
fourth order spatial accuracy. The temporal evolution is time accurate either to let or 2nd
order through choice of parameter.

" In 3-D: The scheme has almost the same properties as in 2-D except that it is now only
conditionally stable, with the stability condition (the CFL number) being dependent on the
'cell aspect ratios,' Ay/Az and Az/Az. The stencil is still compact and fourth order accuracy
at steady state is maintained.

Numerical experiments on a 2-D shock-reflection problem show the expected improvement over
lower order schemes, not only in accuracy (measured by the L2 error) but also in the dispersion.

It is also shown how the same technique is immediately extendable to Runge-Kutta type schemes
resulting in improved stability in addition to the enhanced accuracy.

'This research was supported by the National Aeronautics and Space Administration under NASA Contract -
No. NASI-18107 while the first author was In residence at the Institute for Computer Applications In Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Partial support was also provided
under USAF Grant No. AFOSR-87-0218.
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1 INTRODUCTION

It can be shown [1] that numerical approximations to the linearized Euler equations of gas dynamics
give rise to dispersive errors which in the 2-D supersonic case depend on a similarity parameter

= (Ay/Az)V/KlT (under the assumption v < u everywhere, where u and v are the z
and y components of the velocity vector). The difference between the dispersion relations of any
numerical algorithm and that of the original partial differential equations can be plotted as curves
in the Fourier plane with ic as a parameter.

In particular the results in [11 indicate that for central-difference schemes, the dispersive error
are contributed mostly by the third power of the errors in the Fourier variables 0 and #. It is,
therefore, natural to think of fourth order spatially accurate algorithms as having better dispersive
properties. By utilizing the structure of the Euler equations one can obtain, on a cartesian grid, a
fourth order approximation which instead of using a 5 x 5 stencil (and 5 x 5 x 5 in 3-D) relies on
a compact support of 3 x 3 (and 3 x 3 x 3 in 3-D). The advantages of the combination of fourth
order accuracy together with compact support are quite obvious in terms of total computer work
and memory.

In Section 2, we describe the construction of an approximate factorization (AF) central differ-
ence scheme and examine its theoretical (linear) stability properties. In Section 3, we derive the
corresponding 4-step Runge-Kutta scheme and show how the Jameson-Schmidt-Turkel algorithms
[2] may be easily modified to that form which has, in addition to the higher accuracy, markedly en-
hanced stability limits. In Section 4, we describe some numerical experiments using the AF-version.
Section 5 summarizes our findings.

2 DERIVATION OF THE APPROXIMATE-FACTORIZATION
SCHEME

2.1 The Two-Dimensional Case

Consider a general hyperbolic conservation law in 2-D:

U + h + -. (1)

In the case of Euler equations, for example, the vectors u, f (u), g (i) are given by

;= P ' Put= Pt,2 + (2)PUv P10 + 

I MPV 2+ p)(2
the~ tota enrg per V( P)

where p, u, V, E, and p are respectively the density, velocity components in the z and y directions,
the total energy per unit volume and the pressure. In addition there is the equation of state relating
algebraically (in the case of gas-dynamics) the internal energy to the pressure and density. One
may also write (1) in non-conservation form as

Z' +A j^ +B u-= 0 (3)

where A and B are the Jacobians of f and 9 with respect to u

1



Consider first a forward-time second order central finite difference approximation to (1)

UA, n - ni j1k J-. ______

i'- + Az + 9&+ = 0 (4)A t A X AY ._

where we have dropped the sup-arrow indicating a vector and used the conventional differencing
notation

irt=u?,t = u(jAz, kAy, nAt). (5)

We have a cartesian grid with nodes at z = jAz, y = kAy and t = nAt. We shail now introduce
the usual shift operations notation:

n+1
Du = ui& - '

= I(",+' + y p1 = I(ui,+, + (6)

63U = +,- L-,, = ,+ - -

Eq. (4) then may be written as:
6

Dtu = -Ap 2 6f - -iiisIg (7)

where A = At/Az and iR = Ay/Az. If we take a Taylor series expansion about the grid point
(,V t) = (jAx, kAy, nAt), we can construct the modified equation corresponding to (7):

"i T . + " - -- I31 .... gy + V ln +""

or A A: 2 AY
-t +/=X + gy = tf " + - + -l-+(8)

-ITt+ 1

Thus if we want to approximate (1) to a higher than second order (and in particular to fourth
order in space-see comment in Introduction concerning dispersive errors) we must modify (7) by
subtracting out the terms on the right hand side of (8). At this point we realize that using a
straightforward approach to approximating fz=x and g,,, will lead to bigger stencils. However,
using the original partial differential equation, (1), we have

fez, = -Utua - 19V, (9) 0

and similarly
g =V = -U'V- fXf-f (10)

Since f.uz and g.., need be approximated only to second order (because of their coefficients, AzX/3

and Ay'/3) the required stencil for the terms on the right hand side is only 3 x 3. (This observation
was previously made, in another context by Jones, et al. [3].) So, replacing fzz and g... in (8)
by -6.2Dtu/Az2At - 682pV6Vg/Az2Ay and -6vDu/Ay2At - 6y'p.6,f /Ay2Az, respectively; and
also replacing utt by Dui/At - Dj(-f. - gv)/At -- -D [(g=6xf /Ax) + (#,V8g/Ay)] we obtain
the following approximation to (1) which is spatially fourth order accurate and temporally second
order accurate:

I, +T E + s + -! Ez=, -2 j 31 A I
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3 IU986 g -AV 3 1AX6,62=-AA.,6 - j , y Y -2 - - stI s s6y

Using (3) and the definition of D, we rearrange the above into the delta form

+ ( 6 ( ,u,) ' (A.2 + B6.)] (u.+, - en.+ 6.2

where I is the identity matrix. This is an implicit unfactored scheme. Since we are interested in
marching to steady state we approximate-factor the left hand side to obtain:

I+ 1 A2 + u.6 I+ 38! +%-IuB

(i jyiw + 1 Au8) (i + 2 ? !A Vt, ) ( i+1 - ujn,)

=-A {Ai6. (1+ 1:6.2 fg~ + L'ti61 (I+ ' 6 g2) }. (12)

We introduced into (12) the parameter o. If o = 1 then we retain the temporal second order
accuracy while o = 2 gives first order in time. Note that (12) involves the inversion of block-
tridiagonal matrices. The right hand side represents the steady state operator to fourth-order. The
whole scheme involves only a 3 stencil.

2.2 The 3-D Case

The starting point, corresponding to (1) is

ut +1 3+ g, + h,= 0. (13)

Following the same steps as in the 2-D case, we get the modified equation

[ At Ax 2  X + Az . (14)

u f,.+g.+ h =- -i-Ue.+ /IT1-1 3 1 + + j-h3(1

where using (13), we have

1.3 = -uz,. - g,3 , - h... (15)

9 nVV = -U.,, - hX,, - 1,, (16)

h,,, = -ut., - 13,, - 9,,,. (17)

Repeating all the steps leading to (12) we obtain its three dimensional analog:

+ + B82+ + ''' I + B6, + I,+

, 2 "i+ 1  , f , .ls)hj,]=-+3.! 1 2 + 8.6 ) fn 3! 2u6 (I6 8+ '8.)gic6 5  +j1+ .2+ q '~ 6 U,) V

3 1' 3!1 -1k, +f if 12 I(18)
In (18) the matrix C is the Jacobian a h /61 and the shift operators p,, 6, are defined in a
manner analogous to (6). Q is the cell aspect ratio in the z direction, Q = Az/Az.
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2.3 Stability Analysis for the 2-D Case

We consider the linearized (i.e., frozen coefficients) version of (12). We carry out a Von-Neumann
analysis in the usual manner by casting (12) in Fourier space. A typical Fourier component of uJ,k
is given by

k-(19)

where

q = eA, e = MAY (20)

with
-X<$,0<r and -oo<tm<oo. (21)

The mapping of the various shift operations is as follows:

fiu,- 2isint A 2i, 6.uk -+ 2iinI = 2h7 (22)

pzujt --, Co 2 = V 2, C ujt + coo* - (23)

2 4*jI

and so,
pu , -* 2ifvf--f, J,,tVuijk - 2iV F-1 (25)

We also define the amplification matrix G by 0s+ 1 - GOs. With these notations, the frozen
coefficient version of (12) is mapped into the Fourier space as follows:

(I - jA~2 + ia,.XAA TC2) (I - !BI +, - q2) (G -I)

=-2iA -AAi~ ( 2 q2 (,_ -C2)]. (26)

In the general case the matrices A and B do not commute, thus rendering the analysis of (26)
almost intractable. It is instructive, however, to consider the scalar case. Since the aspect ratio
R = Aiy/Az is arbitrary, and since the original partial differential equation (1), in the scalar linear
case, could be transformed to the wave equation

U, + U, + up = 0

with i = At, - = z and y = Ay/B, we can without loss of generality (in this special linear scalar
case) rewrite (26) as:

( , + ia'ACVi iC) (1 - !.72 + 92(c-1)

=-2iA - 2,2 q2 (1 i2 )]I (27)

Equation (27) can be rearranged to solve for the amplification factor G:

G= a+ i(j - 1)b (28)
a+i'b

4
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where w 1 2 _ 22 + 42,2 1 2 2 (29)

a 3 3 9 iR
and b is the Fourier map of the steady-state operator, i.e.:

C2 , (_2n) + L,7ViT-n(i _ V~)].(0

We see immediately from (28) that for o = 1 (i.e., the case of second order temporal accuracy) we
have a Crank-Nicholson type scheme with 11G01 = 1. For a > 1 (i.e., first order accuracy in time),
we have [JGII < 1. We have thus demonstrated the unconditional stability of (27) for all values of
the cell aspect ratio.

2.4 Stability for the 3-D Case

The three dimensional analog to (27) is

(1- C22 + i -eC2() - 1)

2 n _2 2C2e - ) + _L n * -_ n (1 - 2 ) + C2 -2)]3Q

(31)
where C is the Fourier dual variable defined analogously to and q.

The stability of three dimensional amplification factor G, as defined by (31), is difficult to
analyze and we resorted to numerical evaluations of 0G12, using up to 8 x 106 Fourier modes. The
numerical study of (31) was carried out on the Cray 2. We found that as in the case of forward
Euler approximate factorization second order scheme (4], the amplification factor was conditionally
stable. For example for B? = Q = 1, the stability limit is A < .43. These stability properties are
obtained with the aid of artificial viscosity (AV) term which is of sixth order but still resides on
the compact stencil. The AV term is added to the right hand side (explicit term) of (18) and is of
the form

AGx_626262(2

where p.. is of order unity. We found 1.5 < P.. < 2 to be most efficacious. Without the artificial
viscosity term, the allowed value of A is about one order of magnitude less (e.g., for R - Q 1 1, A
without using AV is about .035).
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3 COMPACT FOUR STEP FOURTH ORDER RUNGE-KUTTA
ALGORITHM

The basic four step explicit Runge-Kutta scheme, as proposed in [2], takes the form:

U0 = Un

U) = u{n) - 'AtR(U(°)

U(2) = U() - IAtR(u(0 ))

(33)
u(3) = u(n) - AtR(u(2 ))

u(4) = u(n) - AtR(u(3 ))

u(,+l) = U(4)

where R is the finite difference (or finite volume) representation of the steady operator. For example,
in the 2-D second order spatial accuracy case

R(u) = if + vvg (34)

where f and g are the flux vectors encountered in section 2. If we want fourth order spatial accuracy,
then it follows directly that the residual R is modified to read

p,8,f 1 6A81 +12)gA (1+6 A 6 (35)

and we still retain the compact support.
Similarly, in the three dimensional case we have

R1 1(2 +62f+ 6v 162+ 12)g + 1 1 .
AX -(1 66 +6,) AY~ 6' 6 A ~ (i6 + V6). (6

Thus (33), with R given either by (35) for the 2-D case or by (36) for the 3-D case, retains all the
features of the second order scheme but gains us the fourth order accuracy. In addition one can
easily verify by simple analysis that for a given cartesian grid and flow conditions the new fourth
order formulation enhances the stability condition. In the 2-D case we have, using (35) rather than
(34)

(At)(4) A (At)49*,h&' = 1.36. (37)

In the 3-D case the gain is even more favorable,

(A = 1.(38)
(At) 2 -

Thus the algorithm efficiency gains are two fold. First, for a given acceptable error level the fourth
order accuracy allows a coarser grid, i.e., fewer node points. Second, not only At is increased due

to the larger cell size but in addition it gains due to (37) (or (38) in the 3-D case).
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4 NUMERICAL RESULTS FOR 2-D CASE

The two-dimensional fourth order compact scheme is applied to a shock reflection problem sketched
in Figure 1. It shows a 5° shock at Mach 1.95 reflecting from a flat plate. Results are presented
both without any explicit artificial viscosity (AV) and with a fourth order AV term of the type
-(.26.) added to the right hand side. Addition of this AV term reduced the accuracy of the
compact scheme to third order (note that in 3-D the sixth order AV terms precludes this reduction
in accuracy). Calculations are also made with a second order implicit Euler AF scheme without and
with the preceding AV term. Figures 2a and 2b show the results of the compact scheme whereas
Figures 3a and 3b show the corresponding results from the second order scheme. It is seen that for

= 0, both fourth and second order schemes produce very oscillatory results but with e = 0.36, the
results from the compact scheme (Figure 2b) improve dramatically and, in fact, are much better
than the corresponding results obtained from the second order scheme (Figure 3b). The shocks
captured by the compact scheme are sharper and the convergence is also seen to improve.

Results from a study of grid aspect ratio effect in the compact scheme are also presented here
in terms of the similarity parameter ic of reference 1. Three values of re are considered, namely 1.67,
1.01, and 0.42. Figure 2b corresponds to r. = 1.67 and figures 4 and 5 correspond to r. = 1.01 and
0.42, respectively. In all these cases, e is set equal to 0.36. It is clear from the figures displaying
the effect of ic that the best results are obtained for ic near unity. In reference 1, a linear theory
(e.g., for weak shock) predicts the same results. It is interesting that we find numerically that this
is also the case in the present nonlinear problem.

SUMMARY

1. The steady state solution of the Euler equations of gas dynamics may be achieved to fourth
order accuracy using a compact grid stencil of 3 x 3 and 3 x 3 x 3 in the 2-D and 3-D cases
respectively. We presented two examples of such algorithms: one implicit (Euler approximate
factorizations scheme) and one explicit (Four-stage Runge-Kutta).

2. Numerical experiments were carried out for the 2-D shock reflection problem, using the im-
plicit algorithm. Comparisons are made with a corresponding second order scheme. The
results show that the compact higher order scheme offers marked improvement in both accu-
racy and convergence rate.

3. In connection with this work we would like to make the following remarks. It is known that
the finite difference scheme cannot obtain high order accuracy for conservation-form equations
computed on a non-uniform grid. This observation coupled with the ease of obtaining fourth 0
order compact schemes even in 3-D for the Euler equations revives an old debate: Can one use
uniform grid and apply conveniently boundary conditions to arbitrary shapes. The potential
gain in reduced number of computational nodes and enhanced convergence rate appears large
enough to study this question again.

7
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Figure 1: Shock reflection problem
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Figure 2a: Pressure distribution and residual plot for compact scheme (e =0, r. 1.67).
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Figure 2b: Presaure distribution and residual plot for compact scheme (e =0.36, oc =1.67).
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